3.8 Transformation Geometry

Transformation geometry involves moving, rotating, reflecting, enlarging, or shearing objects while preserving certain properties.

Key Concepts:

Examples:

Example 1: Find the image of the point \((3, 4)\) under the translation \(\begin{pmatrix} -2 \\ 5 \end{pmatrix}\).

Solution:

Step 1: Apply the translation rule. \[ (x', y') = (3 - 2, 4 + 5) = (1, 9). \]
Thus, the new coordinates are **\((1,9)\)**.

Example 2: Rotate the point \((2,3)\) by \(90^\circ\) counterclockwise about the origin.

Solution:

Using the \(90^\circ\) rotation formula: \[ (x', y') = (-y, x). \] \[ (x', y') = (-3,2). \]
Thus, the new coordinates are **\((-3,2)\)**.

Example 3: Reflect the point \((5, -2)\) across the \(y\)-axis.

Solution:

Reflection over the \(y\)-axis: \[ (x', y') = (-x, y). \] \[ (x', y') = (-5, -2). \]
Thus, the new coordinates are **\((-5,-2)\)**.

Example 4: Enlarge the point \((2, 3)\) by scale factor \(k=2\) about the origin.

Solution:

Using the enlargement formula: \[ (x', y') = (kx, ky). \] \[ (x', y') = (2 \times 2, 2 \times 3) = (4,6). \]
Thus, the new coordinates are **\((4,6)\)**.

Example 5: Apply a shear transformation with shear factor \(k=3\) along the \(x\)-axis to the point \((1,2)\).

Solution:

Using the shear formula: \[ (x', y') = (x + ky, y). \] \[ (x', y') = (1 + 3(2), 2) = (7,2). \]
Thus, the new coordinates are **\((7,2)\)**.

Section 3: Geometry and Mensuration Chapters

← Back to Study Guide