4.4 Circular Measure

Circular measure involves working with angles in both degrees and radians, as well as calculating arc lengths and sector areas.

Key Concepts:

Examples:

Example 1: Convert \(135^\circ\) to radians.

Solution:

Using the conversion formula: \[ \theta = 135^\circ \times \frac{\pi}{180}. \] \[ \theta = \frac{135\pi}{180}. \] \[ \theta = \frac{3\pi}{4} \text{ radians}. \] Thus, \(135^\circ = \frac{3\pi}{4}\) radians.

Example 2: Convert \(2.5\) radians to degrees.

Solution:

Using the conversion formula: \[ \theta = 2.5 \times \frac{180}{\pi}. \] \[ \theta = \frac{450}{\pi} \approx 143.24^\circ. \] Thus, \(2.5\) radians \(\approx 143.2^\circ\).

Example 3: Find the length of an arc in a circle of radius \(10\) cm subtended by a central angle of \(1.2\) radians.

Solution:

Using the arc length formula: \[ l = r\theta. \] Substituting values: \[ l = 10 \times 1.2 = 12 \text{ cm}. \] Thus, the arc length is \(12\) cm.

Example 4: Find the area of a sector with radius \(8\) cm and central angle \(2\) radians.

Solution:

Using the sector area formula: \[ A = \frac{1}{2} r^2 \theta. \] Substituting values: \[ A = \frac{1}{2} \times 8^2 \times 2. \] \[ A = \frac{1}{2} \times 64 \times 2 = 64 \text{ cm}^2. \] Thus, the area of the sector is \(64\) cm².

Section 4: Trigonometry Topics

← Back to Study Guide