Key Concepts:
Range:
The difference between the maximum and minimum values in a dataset. \[ \text{Range} = \max(x) - \min(x) \]Quantiles:
Values that divide a data set into equal parts. Common quantiles include:Quartiles:
Divide the data into four equal parts.Median (Q2):
The middle value of an ordered data set.Lower Quartile (Q1):
The median of the lower half of data.Upper Quartile (Q3):
The median of the upper half of data.Interquartile Range (IQR):
Measures the spread of the middle 50% of data. \[ \text{IQR} = Q3 - Q1 \]Semi-Interquartile Range:
Half of the interquartile range. \[ \text{SIQR} = \frac{Q3 - Q1}{2} \]Mean Deviation:
The average absolute deviation of each data point from the mean. \[ \text{Mean Deviation} = \frac{\sum |x - \bar{x}|}{n} \]Variance:
Measures the average squared deviation from the mean. \[ \sigma^2 = \frac{\sum (x - \bar{x})^2}{n} \]Standard Deviation:
The square root of variance, showing the spread of data. \[ \sigma = \sqrt{\sigma^2} \]Examples:
Example 1: Find the range, quartiles, and interquartile range for the following data set.
Given Data:
\\ \(4, 8, 15, 16, 23, 42, 50, 55, 60\)Solution:
Step 1: Find the Range
\[ \text{Range} = 60 - 4 = 56. \]Step 2: Find the Quartiles
Step 3: Calculate Interquartile Range (IQR)
\[ \text{IQR} = Q3 - Q1 = 52.5 - 11.5 = 41. \]Step 4: Compute Semi-Interquartile Range
\[ \text{SIQR} = \frac{IQR}{2} = \frac{41}{2} = 20.5. \] Thus, the range is **56**, IQR is **41**, and SIQR is **20.5**.Example 2: Find the Mean Deviation, Variance, and Standard Deviation for the following data set.
Given Data:
\\ \(5, 10, 15, 20, 25\)Solution:
Step 1: Compute the Mean
\[ \bar{x} = \frac{5+10+15+20+25}{5} = \frac{75}{5} = 15. \]Step 2: Compute Mean Deviation
\[ \sum |x - \bar{x}| = |5-15| + |10-15| + |15-15| + |20-15| + |25-15| \] \[ = 10 + 5 + 0 + 5 + 10 = 30. \] \[ \text{Mean Deviation} = \frac{30}{5} = 6. \]Step 3: Compute Variance
\[ \sigma^2 = \frac{\sum (x - \bar{x})^2}{n} \] \[ = \frac{(5-15)^2 + (10-15)^2 + (15-15)^2 + (20-15)^2 + (25-15)^2}{5} \] \[ = \frac{100 + 25 + 0 + 25 + 100}{5} = \frac{250}{5} = 50. \]Step 4: Compute Standard Deviation
\[ \sigma = \sqrt{50} \approx 7.07. \] Thus, the mean deviation is **6**, variance is **50**, and standard deviation is **7.07**.