Key Concepts:
To convert a fraction or decimal to a percentage:
Multiply by 100. \[ \frac{3}{4} = 0.75 = 75\% \]To convert a percentage to a decimal:
Divide by 100. \[ 40\% = \frac{40}{100} = 0.4 \]Percentage Increase/Decrease:
\[ \text{Percentage Change} = \frac{\text{Change}}{\text{Original Value}} \times 100\% \]Finding a percentage of a number:
\[ \text{e.g., } 25\% \text{ of } 200 = \frac{25}{100} \times 200 = 50 \]Examples:
Example 1: Converting a Fraction to a Percentage
Convert \( \frac{5}{8} \) to a percentage.Solution:
\[ \frac{5}{8} \times 100 = 62.5\% \]Example 2: Finding Percentage of a Quantity
Find 30\% of 250.Solution:
\[ \frac{30}{100} \times 250 = 75 \]Example 3: Calculating Percentage Increase
A quantity increases from 40 to 50. Find the percentage increase.Solution:
\[ \text{Increase} = 50 - 40 = 10, \quad \text{Percentage Increase} = \frac{10}{40} \times 100 = 25\% \]Example 4: Calculating Percentage Decrease
A value drops from 80 to 60. Find the percentage decrease.Solution:
\[ \text{Decrease} = 80 - 60 = 20, \quad \text{Percentage Decrease} = \frac{20}{80} \times 100 = 25\% \]