8.4 Vectors in 2D

Vectors are mathematical quantities that have both magnitude (size) and direction. In two-dimensional space, a vector is represented as: \[ \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} \] where \(x\) and \(y\) are the horizontal and vertical components, respectively.

Key Concepts:

Examples:

Example 1: Adding Two Vectors

Given \( \mathbf{a} = (3, 4) \) and \( \mathbf{b} = (-2, 1) \), find \( \mathbf{a} + \mathbf{b} \).

Solution:

\[ \mathbf{a} + \mathbf{b} = \begin{pmatrix} 3 + (-2) \\ 4 + 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \] Thus, the sum is \( \boxed{(1,5)} \).

Example 2: Finding the Magnitude of a Vector

Find the magnitude of the vector \( \mathbf{v} = (5, -12) \).

Solution:

\[ |\mathbf{v}| = \sqrt{5^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] Thus, the magnitude is \( \boxed{13} \).

Example 3: Finding the Unit Vector

Find the unit vector in the direction of \( \mathbf{v} = (6, 8) \).

Solution:

Step 1: Find the magnitude: \[ |\mathbf{v}| = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \] Step 2: Compute the unit vector: \[ \hat{\mathbf{v}} = \frac{1}{10} \begin{pmatrix} 6 \\ 8 \end{pmatrix} = \begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix} \] Thus, the unit vector is \( \boxed{(0.6, 0.8)} \).

Example 4: Angle of a Vector

Find the angle \( \theta \) of the vector \( \mathbf{v} = (4, 3) \) with the x-axis.

Solution:

\[ \theta = \tan^{-1} \left(\frac{3}{4} \right) \] Using a calculator: \[ \theta = \tan^{-1}(0.75) \approx 36.87^\circ \] Thus, the angle is \( \boxed{36.87^\circ} \).

Section 8: Miscellaneous Topics

← Back to Study Guide