2.9 Matrices and Determinants

Matrices are rectangular arrays of numbers arranged in rows and columns, used to represent and solve systems of linear equations and perform transformations in geometry.

Key Concepts:

Example 1: Add the matrices \(A = \begin{bmatrix} 1 & 2 \\\\ 3 & 4 \end{bmatrix}\) and \(B = \begin{bmatrix} 5 & 6 \\\\ 7 & 8 \end{bmatrix}\).

Solution:

Add corresponding elements: \[ A + B = \begin{bmatrix} 1+5 & 2+6 \\\\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\\\ 10 & 12 \end{bmatrix}. \] Therefore, \(A + B = \begin{bmatrix} 6 & 8 \\\\ 10 & 12 \end{bmatrix}\).

Example 2: Find the determinant of \(A = \begin{bmatrix} 3 & 4 \\\\ 2 & 1 \end{bmatrix}\).

Solution:

Use the formula for the determinant of a \(2 \times 2\) matrix: \[ \det(A) = (3)(1) - (4)(2) = 3 - 8 = -5. \] Therefore, \(\det(A) = -5\).

Example 3: Multiply the matrices \(A = \begin{bmatrix} 1 & 2 \\\\ 3 & 4 \end{bmatrix}\) and \(B = \begin{bmatrix} 2 & 0 \\\\ 1 & 3 \end{bmatrix}\).

Solution:

Use the rule for matrix multiplication: \[ A \cdot B = \begin{bmatrix} (1)(2)+(2)(1) & (1)(0)+(2)(3) \\\\ (3)(2)+(4)(1) & (3)(0)+(4)(3) \end{bmatrix} = \begin{bmatrix} 4 & 6 \\\\ 10 & 12 \end{bmatrix}. \] Therefore, \(A \cdot B = \begin{bmatrix} 4 & 6 \\\\ 10 & 12 \end{bmatrix}\).

Example 4: Find the inverse of \(A = \begin{bmatrix} 2 & 3 \\\\ 1 & 4 \end{bmatrix}\).

Solution:

Step 1: Calculate the determinant: \[ \det(A) = (2)(4) - (3)(1) = 8 - 3 = 5. \] Step 2: Use the formula for the inverse of a \(2 \times 2\) matrix: \[ A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\\\ -c & a \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\\\ -1 & 2 \end{bmatrix}. \] Therefore: \[ A^{-1} = \begin{bmatrix} \frac{4}{5} & -\frac{3}{5} \\\\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix}. \]

Section 2: Algebra Chapters

← Back to Study Guide